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I.  Summary: Objectives and Status of Effort 
 
 In this report we summarize our accomplishments under Grant FA9559-08-1-0180. The 
objective of this research program is to carry out fundamental research in several interrelated 
areas: (a) development and use of graphical and hierarchical representations for complex 
phenomena and for the construction of scalable algorithms for the fusion of heterogeneous 
sources of information; (b) development of first principles methods for constructing statistical 
models for the variability of shapes and configurations of objects of interest for statistically 
optimal shape estimation and object recognition; and (c) development of new adaptive learning 
and optimization algorithms for analysis of complex, multimodal data for the linking and fusing 
disparate sources of information, for the characterization of features in complex data and 
imagery, and for sensor resource management.  Our research blends methods from statistics and 
probabilistic modeling, signal and image processing, optimization, mathematical physics, 
graphical models, and machine learning theory, yielding new approaches to challenging 
problems in sensing and surveillance.  Moreover, each aspect of our research is directly relevant 
to Air Force missions.  In all of these areas we have contacts and interactions with AFRL staff 
and with industry involved in Air Force programs. 
 
 The principal investigator for this effort is Professor Alan S. Willsky.  Prof. Willsky is 
assisted in the conduct of this research by Dr. John Fisher, principal research scientist in Prof. 
Willsky's group and by several graduate research assistants as well as additional thesis students 
not requiring stipend or tuition support from this grant.  In the next section we briefly describe 
our recent research efforts; in Section III we indicate the individuals involved in this effort; in 
Section IV we list the publications supported by this effort; and in Section V we discuss several 
other topics including honors received by researchers involved in this project, transitions, and 
plans for future transitions. 
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II.  Accomplishments  
 In this section we briefly describe our research under this grant.  We limit ourselves here 
to a succinct summary and refer to the publications listed at the end of this report for detailed 
developments.  However, we do note here that our work continues to have significant impact, 
both in terms of DoD-related activities and transitions in progress (Section V) and in terms of 
recognition from the research community. 
 
2.1 Graphical and Hierarchical Models and Scalable Fusion 
 
 This component of our research, which has been described in detail in a number of papers 
and reports [1, 4-5, 7-15, 17, 20, 22, 23, 26-28, 35, 37-38, 40-41, 45, 49-58, 63-81]. The overall 
objective of this portion of our research is the development of methods for constructing 
stochastic models for phenomena that vary over space, time, and hierarchy and that possess 
structure which can be exploited to construct efficient and scaleable algorithms for statistical 
inference.   
 

a) We have had a series of successes building on a new approach to inference in Gaussian 
graphical models that builds on and moves well beyond our previous work on so-called 
walk-sum analysis for inference in Gaussian graphical models.  Walk-sum analysis 
represents an expansion of the set of information made available to a node through 
successive message passing throughout a graphical model (so that messages engage in 
“walks” throughout the network during which they are modified at each node, so that 
information is accumulated in the process).  Using this interpretation, we have a precise 
characterization of the gap between what Belief Propagation computes for error variances 
in Gaussian models and what the exact computation should produce.  This interpretation 
leads to the tightest known sufficient conditions for BP convergence as well as to a deep 
understanding of when BP fails.  Moreover, this walk-sum analysis has provided the 
basis for the solution of a long-standing open problem, namely the development of easily 
checked conditions for the convergence of our previously developed Embedded Trees 
algorithm.  In addition, this work also provides the basis for an adaptive method for 
choosing which updates should be considered at each stage in the iteration, where the 
criterion used measures the incremental value-added of each option.  Most recently we 
have taken a much more thorough examination of walks in a graph and in particular on 
the walk-sums that are not captured by BP.  Using the idea of self-avoiding walks we 
have discovered a representation that makes use of this concept, together with the concept 
of cycle bases from algebraic graph theory, to show how, in principle, exact computation 
of the variance at a particular node can be computed.  The complexity of this computation 
is closely related to the structure of a graph’s cycle basis and, more specifically to the 
size of so-called feedback vertex sets, i.e., sets of nodes that, when removed from the 
graph, break all cycles.  More importantly, this new insight opens the way to answer a 
number of important questions, such as (i) developing approximations of increasing 
quality (but with increasing computational cost) based on incorporating larger and larger 
subsets of the feedback vertex sets; (ii) efficient sampling from graphical models; and 
(iii) investigating how computations can be done simultaneously at all nodes, something 
that requires both “header bits” on BP-like messages indicating what nodes each message 
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has visited as well as memory at each node to remember some of the messages it has 
received previously.  We believe that this investigation will continue to yield very new 
methods for high-performance inference and especially for distributed fusion algorithms.  
Experimental results show that in addition to the theoretical guarantees of this method, 
the approach yields remarkably good results including in essentially all cases in which 
BP fails to converge.   

b) We have made considerable progress on developing new classes of multiresolution and 
hierarchical graphical models.  For Gaussian processes (or for situations in which we 
focus on second-order statistics), we have developed a new approach to modeling that 
represents phenomena at multiple resolutions, with tree-structured statistical relationships 
between scales but with the statistics within each scale, when conditioned on other scales, 
having only local and sparse correlation structure.  Models of this type yield very 
efficient algorithms, alternating between rapid tree-structured iterations between scales 
and local FIR filtering within each scale.  We have also adapted ideas from maximum 
entropy modeling (see paragraph to follow), an approach that in its usual form aims to 
yield sparse graphical structures, which corresponds to sparse inverse covariance 
matrices. In our case, we want that sparsity in the portion of the inverse covariance 
corresponding to the inter-scale behavior, but sparsity in the portion of the covariance 
corresponding to intra-scale statistics (conditioned on other scales).  We have now 
demonstrated the power of this method, explained its connections to a generalized notion 
of ARMA modeling, and written several papers on this approach.  In addition, we have 
made considerable progress in developing analogous methods for discrete-valued 
processes (and hybrid processes involving both discrete and continuous variables).  In 
this case, coarser-level variables correspond to higher-level, hidden descriptors of the 
discrete “objects” captured at finer scales.  We have developed a modeling methodology 
and are using image recognition tasks (not just recognizing objects but also 
configurations of objects) as the initial target application.   

c) Our research in the last two years has led to major advances along a path of research 
adapting ideas found in fields such as compressed sensing to problems of learning models 
with particular “sparse” structure.  In particular, we have produced a continuing stream of 
publications on the problem of building models for complex, high-dimensional data that 
expose a relatively small set of “hidden” variables which have the property that, when 
conditioned on these variables, the statistical structure of the original high-dimensional 
data is well captured by a sparse graphical model.  For the Gaussian case this corresponds 
to extracting a decomposition of the information matrix (inverse of the covariance) of the 
full high-dimensional data as the sum of a sparse and a low-rank covariance matrix.  
Using optimization criteria that favor sparsity and small rank, we have now developed a 
set of theoretical guarantees and algorithms (based on semi-definite programming).  As 
an aside, we note that this work makes contact with and, at the same time, is 
complementary to the direction of research described in Section 2.1(b).  In particular, the 
decompositions here produce models that do not necessarily have tree-like structure 
across scales (since we do not put that constraint on the connections between hidden and 
original variables), and the models produced using the ideas summarized in this 
paragraph produce sparse inverse covariances when conditioned on the hidden variables 
as opposed to sparse covariances when conditioned on other scales.  In addition, we have 
begun to extend these ideas to other related problems, including discrete-valued fields as 
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well as to graph decomposition in which one decomposes adjacency matrices of complex 
graphs into sums of far simpler ones.   

d) We have taken our work on discovering sparse structure through convex optimization 
considerably farther during the last year of this project.  In particular, we now have a 
general picture of the role of convex optimization in sparse linear inverse problems, as 
well as a theoretical framework for graph decomposition and discovery based on convex 
graph invariants.  In addition, we have developed significant new results for a long-
standing problem in statistics, namely the decomposition of a covariance matrix into the 
sum of a diagonal matrix and a low-rank matrix, and we have extended these results to a 
new framework for learning tree-based graphical models when we are only given the 
statistics at the leaves of the tree.  This last piece of research opens up significant areas 
for extension which we hope to explore in the future. 

e) One of the important areas of application of efficient graphical inference algorithms is 
multisensor, multitarget data association and tracking.  During this past year we have 
continued to investigate a new graphical model representation for problems of this type 
that leads to algorithms that are radically different from any previously developed or used 
in operational systems.  These algorithms, which involve real-time smoothing of target 
trajectories in order to enhance data associations offer a number of significant potential 
advantages.  One of these is the fact that this representation makes the problem of 
incorporating late data – a common issue in real multi-platform surveillance applications 
– is a seamless operation with no additional algorithmic overhead or approximation.  In 
addition, our experiments indicate that complexity of our algorithms scale exceptionally 
well with the length of the tracking interval – a dramatic difference relative to state-of-
the-art algorithms.  Indeed, this advantage allows the maintenance of very long tracking 
intervals, which allows so-called track-stitching, i.e., connecting track fragments 
separated by substantial time gaps, possible with gaps far greater than are currently 
feasible.  This is of considerable importance in a number of operational situations of 
current interest, including those that are aimed at forensic analysis, e.g,. to identify 
starting and ending locations of particular tracks that may be obscured during the middle 
of the tracking interval.  We have now completed a first set of papers on this topic and 
are pursuing extensions to more complete and complex tracking contexts. 

f) We have completed a theoretical development and a paper describing methods and 
analyzing their performance for problems of learning sparse graphs, especially when they 
are designed explicitly for discrimination tasks, namely the learning of sparse graphical 
models for different hypotheses that, when used to form likelihood ratios, minimize 
resulting error probabilities when discriminating among these hypotheses.   During this 
past year we have focused most of our attention on theoretical issues, namely analyzing 
the probability that methods for learning tree models make errors (i.e., learn the incorrect 
tree).  These results, using information geometry, also provide insights into tree structures 
that are easier and more difficult to learn.  This topic clearly overlaps strongly with the 
research in Section 2.3 (see brief discussion therein). 

g) We have made substantial progress in a new approach to building hierarchical graphical 
models in which there are potentially several layers of hidden nodes.  This work has 
involved both an application driven part, namely the learning of hierarchical context 
models for the recognition of objects and groups of objects in complex scenes, and a 
theoretical part.  In the latter we are completing a paper that provides precise results on 
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consistent learning of such hidden, hierarchical trees and have extended these to results 
on consistent estimation of hidden structure using estimated statistics.  These represent 
significant advances which have important implications for exploitation of image-based 
data.   

h) We have also had a set of advances in developing information-theoretic results and 
guarantees on learning of tree and forest distributions from sample data.  Of significant 
importance here is the development of scaling laws for the high-dimensional case.  In 
addition, these results provided the theoretical foundation for some of the consistency and 
error analysis associated with the methods mentioned in 2.1(f).  More recently we have 
developed new results on consistency and scaling laws for learning Ising models on 
general graphs.   

i) We have also begun to look at problems of performance of distributed fusion in sensor 
networks when the sensors are randomly located in a surveillance region.  Key issues 
here involve how the correlation structure in both the signals and noise sensed by these 
distributed elements relates to the random placement structure of the sensors.  For 
problems such as signal detection we also examine communication energy requirements 
associated with collecting sensor information at a fusion center.  Several papers are in 
progress. 

j) We have completed documentation of our work on the emerging class of algorithms 
based on Lagrangian relaxation for MAP estimation. In this approach an overall graphical 
model is decomposed into a set of models each on a tractable subgraph of the original 
graph.  Inference is then performed subject to the constraint that the estimates produced 
on all of these subgraphs agree.  Adjoining these equality constraints via Lagrange 
multipliers leads to iterative algorithms in which estimates are computed on all graphs 
followed by modifying the decomposition to drive the estimates toward equality.  For 
Gaussian models, in addition to guarantees of convergence for estimates, this approach 
also yields upper bounds on error variances which can be further tightened by 
optimization of the weighting used in the decomposition.  Moreover, for Gaussian models 
we have begun to develop a framework for multiscale Lagrangian relaxation that has 
shown great promise for considerable speed-ups in convergence.  For discrete models 
(e.g., as arise in problems such as data association) we have developed methods using 
ideas from statistical physics by replacing the maximization operation (for the 
computation of MAP estimates) with a temperature-dependent potential function that, 
when “cooled” converges to the max operator.  Using this, together with adaptive 
methods for iteratively augmenting the graph decomposition by identifying parts of the 
graph in which estimates are frustrated or in competition, we have demonstrated that we 
can often remove duality gaps completely, yielding overall optimal solutions.   

k) We completed a body of work on the building of thinned and thus more tractable 
graphical models that accurately approximate the statistics of more complex models.  
Specifically, if we attempt to build graphical models with maximum entropy whose 
statistics exactly match those of a specified graphical model, we will, in general obtain 
complex models.  However, if we relax the constraints—i.e., if we only require that the 
statistics of our simpler model be close to those of the more complex one—the resulting 
max-entropy model is frequently dramatically simpler.  We have demonstrated the 
model-thinning power of this approach and we are now working on the problem of 
adding hidden variables in ways in which we can then perform thinning on this expanded 
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model.  This is of particular importance in the context of multiresolution modeling (see 
the next topic).   

l) We have also completed our research on what we refer to as low-rank variance estimation 
methods for complex graphical models. The idea behind this approach is to construct 
low-rank approximations to the identity matrix with particular properties.  Specifically, 
such a representation leads directly to an estimate of the variance at every node in the 
graph corrupted by “interference” from the cross-correlation between pairs of nodes and 
the dot product of the corresponding rows in the low-rank approximation to the identity.  
This leads to the idea of choosing the approximation to have orthogonal rows when cross-
correlations are large but not worrying about their non-orthogonality if the corresponding 
cross-correlation is negligible.  This leads to interesting graph-coloring algorithms for 
designing these overcomplete sets of rows, and, together with randomized choices of 
signs on these rows, we obtain unbiased estimates of the exact variances with guaranteed 
accuracy for processes with exponentially decaying correlations.  For processes with 
long-distance correlations a variation on this approach using wavelets – and what we 
refer to as spliced wavelet bases – yields equally powerful methods for an even richer 
class of processes.  Extension to problems involving the fusion of multiresolution data is 
a promising direction for the future.   

m) We have also made considerable progress on two prototypical and very important  
discrete optimization problems specified on graphical models, namely the so-called 
maximum independent set and matching problems.  Such problems arise in a variety of 
applications including many involving resource management, sensor network 
organization, and optimization.  Such problems are naturally cast as integer programming 
problems which are NP-hard.  Relaxed versions of these problems can be formulated in 
terms of linear programs.  Such a formulation can lead to integrality gaps and thus fail to 
give optimal answers; however in some cases the LP does indeed yield optimal solutions.  
Alternatively these problems can be formulated as MAP estimation problems on 
graphical models for which the so-called max-product algorithm provides a general 
purpose algorithm that is only guaranteed to yield optimal answers for graphs without 
loops but often works well in other contexts.  We have now succeeded in providing a 
detailed characterization of the relationship between LP and max-product approaches.  
Moreover, this approach provides a very effective method for resource management in 
distributed fusion networks and thus makes important contact with the research in Section 
2.3.   

n) We have also completed documentation of an investigation that brings together the field 
of decentralized team decision-making and message passing algorithms on graphs.  In 
particular, for the case of a directed set of sensing, decision, and communication nodes 
(so that each node receives its own measurements together with bits from its “parent” 
nodes and then makes decisions resulting in bits transmitted to its “children”) we have 
shown that so-called person-by-person team optimization can be achieved via a message 
passing algorithm.   This emphasizes that in communication-limited contexts with 
distributed agents, the agents must organize themselves and, in particular, design 
communication protocols for the generation and interpretation of messages within the 
agent network.  We have now written an extensive paper on this work and demonstrated 
its value in designing decision networks that may differ in structure from that of the 
underlying variables being estimated.  Moreover we have also begun to develop an 
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undirected version of this framework – a nontrivial extension as such a framework in 
principle allows feedback so that making a decision on what to communicate must also 
be based on the impact that that communication will have on what will be communicated 
back to the transmitting node.  As with the preceding paragraph, this work involves a 
blend of graphical models and optimal resource utilization (in this case limited 
communication capacity) and hence makes contact with the research in Section 2.3. 
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2.2 Advanced Statistical Methods for Extraction and Recognition of Objects, Their 
Features and Geometry 
 
 The research described in this section and reported in detail in [2, 3, 6, 19, 31, 33-34, 46, 
47, 63-66] has as its general objective the development of statistically robust methods for 
segmentation, shape estimation, and object recognition.  Much of our first work in this area has 
focused on so-called curve evolution methods and, in particular, on developing statistically based 
curve evolution algorithms.  However, we more recently we have had successes in research 
directions that exploit ideas from graphical models described in the preceding subsection: 
 

a) The major focus of our most recent research has been on the development of 
hierarchical graphical models for the recognition of objects in context as well as the 
detection of objects that are out of context.  Here, context refers to the learned 
hierarchical structure that captures the nature of scenes and the fact that certain sets of 
objects often occur together: cars and roads, desks and computer monitors, etc., and 
other objects generally don’t appear together – e.g., roads and bathtubs.  Using 
methods described in Section 2.1 for the learning of graphical models with hidden 
hierarchical structure, we have developed new scene-based object recognition 
methods that naturally exploit the dual facts that detection of particular objects may 
suggest particular scenes or contexts, while knowing the context may allow the 
detection of one type of object (e.g., a desk) to inform and enhance detection of 
another object (e.g., a computer mouse).   

b) The earlier component of our work in this part of our agenda has been on using curve 
evolution as a central component in learning decision statistics and rules from expert-
labeled data.  The general premise here is to design decision boundaries based on 
maximizing the margin – i.e., the distance to the decision boundary – of all labeled 
data.  As the distance from a curve (or surface in higher dimensions) is directly 
encoded in a particular level-set function for that curve, namely the signed distance 
function, we are led naturally to an optimization formulation in which a margin-based 
cost, such as hinge loss, can be expressed directly as a function of the signed distance 
function from the desired decision boundary “curve.”  Including a regularization term 
(e.g,. total curve length) then leads directly to a curve evolution-based method for 
designing decision rules.  We have demonstrated the efficacy of this approach on 
numerous standard data sets and also have developed theoretical results guaranteeing 
the consistency of the resulting estimates.  In addition, we have shown how these 
methods can be combined with dimensionality reduction ideas in which high-
dimensional data are first projected onto a lower-dimensional subspace on which the 
decision boundary is then determined.  This area of research has obvious overlaps 
with that which is the focus of the third thrust of our research (see Section 2.3). 

c) We completed our work on Monte Carlo methods to sample from curve/shape 
distributions directly—i.e., to generate “particles” that correspond to complete curves.  
We have now developed a methodology for doing this – a nontrivial development as 
the use of Metropolis-Hastings algorithms required developing so-called detailed 
balance acceptance rules that are needed to guarantee that samples are generated by 
the desired shape distribution.  We have also developed methods for displaying the 
uncertainty in the resulting extracted shapes – a feature that we believe will be of 
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great importance in object recognition applications.  One of the appealing aspects of 
this sampling framework is that, with the detailed balance issue now solved, it is 
relatively easy to include features in the distribution that are easily used for 
acceptance-rejection of samples but are not easily incorporated into curve evolution 
methods.  For example, we have demonstrated how human expert input – e.g., 
identifying small regions that are inside, outside, or on the boundary of the region of 
interest – can be easily included.  Moreover, we have used ideas of graphical models 
to develop novel sampling methods for “2.5-dimensional object segmentation,” in 
which 3-D data sets (e.g,. from LADAR) are segmented slice by slice, but with 
statistical consistency across slices accounted for via a graphical model.  Several 
papers are in progress. 

d) One area of our most recent research is in incorporating prior information about shape 
into curve evolutions.  This is particularly important for problems in which image 
SNR is low or in which the objects of interest are partially occluded.  Major issues 
here include the development of methods for constructing prior probability 
distributions on shapes from examples and the incorporation of these priors into curve 
evolution formalisms.  Our initial work in this area used a set of training examples to 
construct a set of “eigenshapes,” which then are used to provide a linear 
parameterization of a set of shapes, where the parameters of that linear 
parameterization is then estimated as part of the curve evolution process.  Results on 
both military and medical images in both 2-D and 3-D have demonstrated that this 
methodology has a great deal of promise.  In addition, we have been working to move 
beyond these linearly-parameterized methods in several different directions.  The first 
of these methods involves postulating that the model to be learned from training 
examples is a mixture of two or distributions each of which is well characterized by 
principal component analysis.  This introduces a hidden variable for each training 
sample—i.e., the  component of the mixture to which it corresponds—which in turn 
leads to a new EM-based algorithm.  Results demonstrate the power of this extension 
to classify shapes and model their variability.  A second approach we are taking is 
that of learning nonparametric models for shapes given a set of training samples.  
Nonparametric density estimation methods require the use of a distance metric 
between pairs of shapes, and our work has led us to use two natural metrics, each of 
which leads to a different curve evolution.  Both of these have been shown to have 
considerable promise for recognizing and segmenting shapes that can have 
considerable variability or be subject to partial occlusion.  We are also developing 
new methods that can incorporate human or expert input – e.g., in the form of partial 
segmentations – to help guide both curve evolution as well as Monte Carlo sampling. 

 
 
2.3 Machine Learning and Optimization Methods for Robust Fusion, and Effective Use of 
Limited and Distributed Resources 
 
 The research described in this section deals with methods for complex signal, image, and 
data analysis using methods of machine learning and optimization- based formulations.  Our 
research is described in [16, 18, 20-21, 24-25. 29-34, 36-39,42-44, 46-48, 52-54, 59-62].  Our 
research has led to the following lines of inquiry and results: 
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a) We have had major successes and considerable publicity for our work on using 

Hierarchical Dirichlet Processes (HDP) in learning target motion patterns and, more 
generally, multiple modes of dynamic behavior for complex systems represents a 
major new thrust for our research on learning models for complex dynamic 
phenomena.  In particular, we have developed new hidden Markov model (HMM) 
and switching state space models that do not presuppose any knowledge of the 
number of modes to be captured in these switching models, the transition 
probabilities between these modes, or the dynamic behavior for each mode.  Our 
work to date has shown considerable promise, including demonstrations on extracting 
models of the complex behavior of “bee dances” (in which bees engage in complex 
motion patterns to signal the location of a food source; a problem that is an obvious 
surrogate for patterns of interest in military scenarios), on detecting major economic 
events from the dynamic behavior of stock indices, and the extraction and 
segmentation of audio signals in which an unknown number of unknown speakers are 
engaged in conversation (where we do not know what any speaker sounds like nor do 
we know when each is speaking).  All of these results are being documented in a 
series of papers.  We have also initiated extensions to allow semi-Markov processes 
and also a very powerful extension involving extracting modes of behavior that are 
exhibited by groups of objects (in which each object may exhibit only a subset of 
these modes).   

b) During the past two years we have developed new methods that go beyond those 
described in Section 2.3(a) above.  In particular, the restriction to hidden Markov 
behavior in our earlier work, while significant, has limitations in terms of expressivity 
in terms of capturing memory in complex data.  Motivated by this observation, we 
have developed an extension of our HDP framework to hidden semi-Markov models 
(HSMMs).  Such models separate the designation of different modes of behavior from 
the detailed definition of system state and lead to very powerful new models with 
considerably greater expressivity (e.g., Morse code dots and dashes are difficult to 
represent with HMMs without many states, while they are very easily described with 
HSMMs).  Moreover and very interestingly, the extension to HSMMs suggests much 
more efficient methods for inference and sampling for HDP-HMM models as 
described in 2.3(a). 

c) In Section 2.1(f) we described one of the directions of research that lies at the 
intersection of graphical models and learning, namely the problem of learning 
tractable graphical models from data, where the criterion used is not model accuracy 
but model utility – in particular in hypothesis testing/classification applications in 
which the challenge is discriminating between two high-dimensional probability 
distributions given a limited set of training data.  As one would expect, if vast 
amounts of data are available, the models learned for the two different probability 
distributions revert to the best models for each individually. However, when data are 
limited, the results can be significantly different – i.e., from these limited data what 
we really desire are models that highlight saliency, the significant differences 
between hypotheses. In particular, we have now developed very efficient models for 
building discriminative tree and forest models from sample data in order to optimize 
discrimination performance as measured by so-called J-divergence.  Very 
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importantly, the algorithm for the optimal solution to this problem is greedy, so that it 
starts by incorporating the most salient difference between the observed data features 
under the different hypotheses and then successively adds additional features if they 
add to discrimination performance.  This is of potentially great value in many 
contexts in which high-dimensional data need to be processed but sufficient data are 
not available to build accurate models (or building such models is computationally 
intractable).  Applications ranging from hyperspectral data analysis to multimodal 
fusion for object classification will benefit from this line of research.  In addition, we 
have shown how we can use boosting to build discriminators that use a collection of 
tree likelihood functions (and hence function in a manner very similar to that of 
models on more complex graphs than trees).  In addition, we have very recently made 
significant theoretical progress in providing precise results that make it clear that 
focusing on saliency can greatly reduce the number of training samples needed for 
discriminative learning, a fact that is extremely important in applications such as 
automatic target recognition.   

d) A continuing and very active component of our research focuses on so-called 
sparsity-based signal and image processing.  On the theoretical side, we have recently 
documented significant new results on so-called compressed sensing, a topic of great 
current interest in research and practice in which signals that are known to be sparse 
in a particular basis (i.e., have a relatively small number of nonzero coefficients) can 
be faithfully reconstructed from surprisingly small sets of measurements (as long as 
those measurements are “diffuse” with respect to the basis in which the signal to be 
recovered is sparse).  In our work we have shown that if one solves this problem 
recursively, adding data samples at each step, one can not only develop very precise 
and simple stopping rules, but when one stops, in general even fewer data points are 
required.  In addition, as mentioned in Section 2.1(e), we have adapted some of the 
ideas behind compressed sensing – namely variational formulations employing 
regularized norms such as l1 – that are used as surrogates for sparsity.  In our case, we 
have used both l1 to prefer sparsity in learned graphical models as well as the so-
called nuclear norm (sum of singular values), a surrogate for rank to learn hidden 
models for complex data, in which the low-rank portion corresponds to the influence 
of a set of hidden variables, and the sparse portion corresponds to the conditional 
graphical structure of the observed variables when conditioned on the hidden 
variables.  As mentioned in Section 2.1(c) we have obtained theoretical results and 
developed algorithms to find such decompositions which provide very attractive 
models for inference for Gaussian processes. 

e) We have developed a set of results on constructing or learning decision rules for 
complex data.  One part of this work deals with the problem of modeling experts in 
terms of their prior models for a set of hypotheses.  Using a well-documented 
phenomenon that humans tend to categorize items, we have developed an approach to 
optimal quantization of prior probabilities in hypothesis testing problems.  This leads 
to nontrivial and important insights into how such categorization can bias decision-
making.  Interestingly, this work then served as the launching point for work 
described in part in Section 2.2(b) on learning decision rules and decision regions 
from expert-labeled data.  In Section 2.2(b) we described our work on using curve 
evolution methods to determine decision boundaries that maximize the margin in 
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decision-making.  We have also developed methods aimed at dimensionality 
reduction, i.e., at projecting high-dimensional data onto lower-dimensional subspaces 
that contain the discriminating information used in these expert-labeled examples.  
We have shown how we can couple this either with curve evolution methods or with 
support vector machines and have performed theoretical analysis providing 
conditions for consistency and also demonstrating the value of dimensionality 
reduction when limited training data are available – i.e., in contexts in which reducing 
dimensionality can greatly reduce the tendency toward overfitting.  In addition we 
have extended these ideas to problems in distributed fusion, in which sensors are 
organized into a directed fusion network and each sensor must perform 
dimensionality reduction before forwarding its data to subsequent nodes in the 
network and ultimately to the fusion center which has the objective of taking all 
information that reaches it and making maximum-margin decisions.  Very 
importantly, the optimization of the different sensors’ dimensionality reduction 
computations involves message-passing propagating information through the fusion 
network.   

f) As mentioned in Section 2.1, some of our work on graphical models has led to new 
methods for optimizing resource utilization in distributed fusion networks.  In 
particular, the research mentioned in Section 2.1 (k) includes new results on 
algorithms for problems such as optimal formation of a communication network for a 
set of distributed sensors, in which the cost to be optimized involves weights on each 
potential link trading off informational value of that link with the power required for 
communication using it.  The research described in Section 2.1 (m) involves the 
development of distributed algorithms for organizing the signaling among a set of 
sensors once the communication network has been established.  In particular, in this 
methodology, sensors must develop a fusion protocol so each sensor knows how to 
interpret information sent to it by other sensors and then knows how to process these, 
together with its own local data to produce signals to send to other sensors in order to 
optimize an overall team objective that is a weighted combination of decision error 
costs (where decisions are made by a subset of the sensing nodes) and total 
communication required.  Interestingly the process of determining this fusion 
protocol admits a message-passing implementation itself, so that the organization of 
the sensor network can be accomplished in a distributed manner.   

g) Sparsity also remains an important part of our work on variational methods to 
produce enhanced images and reconstructions for SAR, ISAR, and more general 
array processing applications.  In particular, by putting particular penalties (e.g., Lp, 
with p < 1) either on the reconstructed image or on the gradient of the reconstructed 
image, we have shown that we can produce remarkably sharp images of point 
scatterers or regions and can also correct for phase errors due to target motion—an 
extremely important problem in SAR imaging of moving targets or to other sources 
(including timing errors to array element location errors).  Moreover, in contrast to 
many other superresolution methods (e.g., MUSIC, Capon’s method), our method can 
resolve multiple scattering effects that are highly correlated—e.g., due to the presence 
of multipath effects.  In one part of our research we have developed new variational 
approaches for array processing that work well for broadband sources and, in 
particular, for sources that generate multiple harmonics (e.g., as are present in any 
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motor or machinery).  In another component of our research we have taken a deeper 
look at marrying SAR physics with nonparametric statistical learning methods for 
constructing probabilistic models for multiresolution imagery.   In particular consider 
the formation of SAR imagery based on a given full aperture of data.  If we use the 
entire aperture, we obtain imagery at the finest resolution resolvable using that data.  
However, to do this we in essence must assume that all scattering is isotropic, i.e., 
that the response from significant scatterers is constant across the entire aperture.  For 
many important scattering mechanisms this is not the case at all, and this anisotropy 
is critical to distinguishing one scatterer type from another.  Suppose then, that in 
addition to forming an image using the entire aperture, we also form three images 
each using half of the aperture:  one image using the right half, one the left, and one 
using a centered half-aperture.  If indeed there are anisotropic scatterers, we might 
expect that there would be differences in the responses in each of these half-apertures 
and hence in the images formed using them (note that these images would have pixel 
sizes twice as large as the ones in the finest scale imagery).  Iterating this process, we 
can imagine forming a vector of images at each of a sequence of scales corresponding 
to progressively smaller subapertures.  By looking across scale, then, we would 
expect not only to find statistical variability due to speckle but also any evidence of 
anisotropic scattering manifesting itself in statistically significant differences in pixel 
intensities in images formed using different subapertures.  We have initiated an effort 
in this area that employs the “sparseness prior” variational framework described in 
the preceding paragraph.  Initial results provide the basis for some new “best basis” 
methods for imaging that avoid exhaustive search of subapertures through a modified 
coarse-to-fine search with intelligent back-tracking.  We believe that there is much 
more that can be done in this area.  For example, one very promising direction for 
future work is that of coupling these front-end algorithms with back-end object 
recognition using the framework of Dirichlet processes for object recognition 
described in the preceding section.  In particular, we expect that by building object 
models that couple object models with anisotropy properties we will be able to 
develop algorithms in which object-level hypotheses will drive front-end signal 
processing.  This offers the possibility of a significant conceptual and algorithmic 
leap over current methods (e.g., the current form of the so-called “PEMS Loop” in the 
algorithms developed under the MSTAR program). 

h) We have also developed a new, first principles probabilistic approach to Markov 
modeling on trees, together with a start on the nontrivial generalization to graphs with 
loops.  Interestingly this approach identifies reduced sets of conditional independence 
relationships that need to be verified either in determining if a particular set of 
variables are Markov or in designing hidden variable representations to ensure 
Markovianity.  The former interpretation of our results is of great importance in the 
context of the estimation of the structure among a set of observed variables—e.g., to 
identify statistical links among them as well as conditional independencies, a topic 
sometimes referred to as link discovery.  This is closely related to our recently-
initiated work on learning models for coordinated motion patterns of multiple objects.  
One long-term objective of this portion of our work is to tie it in with the Dirichlet 
process-based methods described in (a) in order to develop methods for automatically 
determining such coordinated motion models on the fly.
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 In this section we summarize our and plans for transitions associated with research 
supported by AFOSR Grant FA9559-08-1-0180, as well as listing some important honors 
received by members of our research team. 
 
Honors and Recognition 

(1) Dr. Junmo Kim, Dr. Mujdat Cetin, and Prof. Alan Willsky were awarded the 2008 Best 
Paper Award for their paper “Nonparametric Shape Priors for Active Contour-Based 
Image Segmentation,” in the journal Signal Processing. 

(2) Prof. Alan S. Willsky was appointed Director of MIT’s Laboratory for Information and 
Decision Systems 

(3) The research of Dr. Emily Fox was chosen by AFOSR for a research highlight and has 
also been featured in Signal magazine. 

(4) Dr. Kush Varshney received a Best Student Paper Award for his paper at the 2009 
International Conference on Information Fusion.  

(5) Prof. Alan S. Willsky was awarded the 2010 IEEE Signal Processing Society Technical 
Achievement Award. 

(6) Dr. Fox received the Jin-Au Kong Outstanding Doctoral Thesis Prize from MIT’s Dept. 
of EECS.  

(7) Dr. Fox received the Savage Award for the best Ph.D. thesis in Applied Methodology in 
Bayesian Statistics. 

(8) Prof. Willsky was elected to the National Academy of Engineering in 2010. 
(9) Dr. Dmitry Malioutov, Dr. Mujdat Cetin, and Prof. Willsky received the 2010 IEEE 

Signal Processing Society Best Paper Award for their paper “A Sparse Signal 
Reconstruction Perspective for Source Localization with Sensor Arrays,” in the IEEE 
Trans. on Signal Processing. 

 
Participation/Presentation at Meetings 
 In addition to the a number of invited and contributed talks presented at various meetings, 
we also make note of the following: 
 

(1) Prof. Willsky and many of the students, scientists, and post-docs in his group have 
given a continuing series of lectures on their research at MIT Lincoln Laboratory. 

(2) Prof. Willsky was the only academic participant at the 2010 meeting on Mission-
Focused Autonomy held at JIATF-S in Key West Florida in June 2010. 

(3) Prof. Willsky gave a plenary address at the 2010 Machine Learning Workshop 
associated with the Neural Information Processing Systems Symposium. 

 
Consultative and Advisory Functions 
 
 We continue to be actively engaged in a number of activities relevant to the research 
being performed under our AFOSR grant: 
 

(1) Prof. Willsky has regularly acted as a consultant to BAE Systems Advanced 
Information Technologies (BAE-AIT; formerly Alphatech, Inc.) in a number of 
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research projects including ones that represent direct transitions of the technology 
being developed under our AFOSR Grant.   

(2) Prof. Willsky served on the Senior Review Panel for DARPA’s POSSE (Persistent, 
Operational Surface Surveillance and Engagement) Program which is aimed at rapid 
deployment of advanced ISR systems to active areas of conflict (note that all of the 
other members of the panel are either retired 3- and 4-star generals or individuals who 
previously served as Deputy Assistant Secretaries of Defense). 

(3) Prof. Willsky has recently initiated consulting activities with Parietal Systems, Inc. 
and is actively involved in transitions of his research to programs being conducted 
and envisioned.   

 
Transitions 
 
 The following represent some of the ongoing transitions of our work as well as some 
plans for future transitions: 
 

(1) Our work on Lagrangian Relaxation Methods has been incorporated into BAE 
System Advanced Information Technologies (BAE-AIT) All-Source Track and ID 
Fusion (ATIF) System.   

 
(2) Our work on sensor resource management has been transitioned to Lincoln 

Laboratory.   
 

(3) Dr. Mujdat Cetin’s methods for sparse regularization for radar signal processing and 
SAR analysis have been transitioned to AFRL/SN, and Dr. Cetin, in collaboration 
with Prof. Randy Moses of Ohio State University have been working toward 
enhancing this transition.  

 
(4) We are moving forward with engineers at Parietal Systems for the transition of our 

new graphical-model-based approach to multi-sensor, multi-target tracking.  The  
 

(5) We are actively pursuing at BAE-AIT, Lincoln Laboratory, and Parietal Systems, Inc. 
on transitioning our methods for automatic learning of behavior models for targets 
and other dynamically evolving phenomena using the emerging class of models based 
on Dirichlet Processes.  In particular Parietal Systems is working on several Air Force 
SBIR programs that aim explicitly at that transition. 

 
(6) Our work on machine-learning-based methods for multisensor fusion has been 

transitioned to BAE-AIT where it has been applied to problems of audio-video 
fusion.   
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